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ABSTRACT 

Ballistic validation testing typically involves firing multiple shots at a 
nominal velocity and ensuring the target stops every round with only partial 
penetrations, no completes. This testing is specified as a consequence of the binary 
nature of the test, and the need to meet a particular probability of penetration at a 
specified velocity with a certain confidence level. This legacy process has 
significant shortcomings owing to both the test procedures involved as well as the 
nature of the statistical interpretation of the results. This paper describes an 
alternative test and analysis procedure that produces the required level of 
performance and confidence information at a specified velocity, as well as the 
confidence over a wide range of other velocities and performance levels. In 
addition, this procedure eliminates many of the shortcomings associated with the 
legacy “no penetration” test protocol, and requires no more shots at the target. 
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1. INTRODUCTION 

Armor performance requirements normally call 
out a specified probability of penetration and 
confidence level at a given velocity, for example, 
90% confidence that the probability of penetration 
is less than 10% at 3,000 feet/second (a so-called 
V10 specification). The test procedure used to 
validate this performance is called out in ITOP 2-2-
713 [1], and frequently results in a “22 of 22” test, 
in which 22 rounds are fired at the target at one 
specified velocity, and any single penetration 
invalidates the design. The result of this testing is 
one value for the confidence C of achieving a given 
level of performance P at given velocity V. The test 
provides no further information on how the design 
performs at other velocities, where it fails, or how 

the confidence varies with the levels of 
performance and velocity. 

The rationale for the current testing regime is 
based on binomial statistics and has the advantage 
of extreme simplicity. However, it has a number of 
shortcomings in practice. For example, owing to 
the nature of test standards, it is common practice 
to test at a velocity above the specification, 
effectively using the test procedure to change the 
ballistic requirement. In addition, this process is 
sensitive to “black swan” events, where an anomaly 
in a single shot (for example, a round with out-of-
spec properties) can invalidate an entire design. 

In contrast, it is possible to use somewhat more 
sophisticated test procedures to ameliorate the 
shortcomings of the existing test regime, while at 
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the same time acquiring substantially more 
information on the performance of the target with 
the same or fewer ballistic tests. This requires, first 
and foremost, a more rigorous statistical analysis of 
the ballistic results in order to enable hypothesis 
tests on the observed performance. These 
procedures utilize what are sometimes called “V50” 
tests, which are simply multiple shots conducted 
over a range of velocities which result in both 
partial and complete penetrations of the target. 
There are a wide variety of methods to choose from 
in V50 testing, including Modified Langlie [2], 
Three Phase Optimal Design (3POD), Neyer 
Method, and Robbins-Monro-Joseph (RMJ) [3-5]. 
But the particular method is not as important as the 
statistical analysis of the results, which makes it 
possible to acquire an estimate of the confidence 
level C as a function of the probability of 
penetration P and the velocity V over the entire 
range of test conditions and beyond. 

The basic concepts behind the methods described 
in this paper are presented in detail in two papers 
by Joseph Collins of the Army Research 
Laboratory dealing with what he calls Quantal 
Response, ARL-TR-6022 and ARL-TR-7088 [6-
7]. The author apparently believes that we have 
actually regressed in our ability to conduct 
meaningful ballistic testing. The following is a 
quote from ARL-TR-7088, Quantal Response: 
Estimation and Inference  [7] (emphasis added): 

The ballistic limit test is an important part 
of characterizing armor performance or 
establishing the lethality of projectiles. At a 
minimum, the analysis of such a test 
provides a single number which is an 
estimate of the ballistic limit itself. By 
1950, however, it was already established 
that statistically meaningful decision 
support requires additional methodology 
that manifests as confidence intervals and 
hypothesis tests on the ballistic limit. 
Unfortunately, as time passed, this 
knowledge was ignored. 

This paper will address the methods described by 
Collins and apply them with examples to V50 
ballistic data. In addition, we will show the results 
of a Monte Carlo simulation of roughly 1,000 
ballistic records generated from an underlying 
Gaussian distribution to illustrate the utility and 
accuracy of these methods applied to ballistic 
testing. 

 
2. V50 TESTING AND LIKELIHOOD 
ESTIMATES (LE) 

  The main concept behind the statistical analysis 
of V50 test data involves calculation of likelihood 
estimates. Consider the ballistic data shown in 
Table 1 below, derived from a 25-shot sequence. 
The columns show the test velocity together with 
the penetration result. In addition, for each shot a 
probability of penetration is shown. This is based 
on a Gaussian (probit) distribution in which the 
probability is calculated from the cumulative 
probability density function with a given mean µ 
and standard deviation σ.  

Table 1: V50 Ballistic Test Data 

 

Test Data
Velocity Result P(Pen) P(Result)

3,303 Complete 93.9% 93.9%
3,064 Partial 0.0% 100.0%
3,138 Partial 0.0% 100.0%
3,232 Partial 1.6% 98.4%
3,375 Complete 100.0% 100.0%
3,271 Partial 45.5% 54.5%
3,374 Complete 100.0% 100.0%
3,236 Partial 2.7% 97.3%
3,328 Complete 99.8% 99.8%
3,318 Complete 99.0% 99.0%
3,275 Complete 53.7% 53.7%
3,218 Partial 0.2% 99.8%
3,295 Complete 87.1% 87.1%
3,241 Partial 4.7% 95.3%
3,245 Partial 7.2% 92.8%
3,249 Partial 10.5% 89.5%
3,287 Partial 76.3% 23.7%
3,276 Partial 55.8% 44.2%
3,294 Complete 86.0% 86.0%
3,250 Complete 11.4% 11.4%
3,290 Complete 80.8% 80.8%
3,296 Complete 88.2% 88.2%
3,235 Partial 2.4% 97.6%
3,262 Partial 28.1% 71.9%
3,289 Complete 79.4% 79.4%
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑉𝑉𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇) = 1
√2𝜋𝜋𝜎𝜎2 ∫ 𝑒𝑒

(𝑉𝑉−𝜇𝜇)2

2𝜎𝜎2 𝑑𝑑𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
−∞         (1) 

 
The probability of obtaining the result shown is 

equal to either PPEN or 1–PPEN, depending on 
whether the shot was a complete or partial 
penetration. The likelihood of obtaining the 
observed test results (assuming each event is 
independent) is simply the product of the 
probability of each individual result. This value 
L(µ,σ) is called the likelihood estimate, and is a 
function of the values of µ and σ and the test data. 
For a probit/Gaussian distribution, the value of µ 
corresponds to the V50 velocity at which we would 
expect half of the rounds to penetrate the target. The 
value of σ is identified with the standard deviation. 
Figure 1 below shows a contour plot of the 
likelihood function over the (V50, σ) plane. 

 
Figure 1: Likelihood as a function of V50 velocity and σ. 

The peak of this distribution occurs at the values 
of V50 and σ which maximize the likelihood 
function. These are called the “maximum 
likelihood estimates”, or MLE values. In this case, 
these are VMLE = 3,273 and σMLE = 19.3. With these 
values, it is possible to calculate the probability of 
penetration at any velocity. So, for example, we can 
find the velocity at which the probability of 
penetration equals 10%, the so-called V10 velocity, 

which is Φ−1(10%, 3273, 19.3), where Φ−1 is the 
inverse of the cumulative distribution function with 
the given probability, mean, and standard 
deviation, which gives V10 = 3,248. 

This analysis allows us to plot the data on a curve 
showing the test results together with the MLE 
probability of penetration, as shown in Figure 2. 

 
Figure 2: Test data plotted with MLE PPEN estimate. 

While the MLE curve provides a relation between 
PPEN and velocity, it does not provide what we need 
for validation – a confidence estimate. How certain 
are we that the test data supports the assertion that 
the actual V10 value is greater than or equal to that 
calculated from the MLE distribution? That is, how 
confident are we that we meet the requirement? 
This is where hypothesis testing comes into play. 

 
3. HYPOTHESIS TESTING 

As mentioned earlier, ballistic requirements often 
specify a minimum level of performance 
(probability of penetration) at a given velocity, with 
a minimum confidence level – for example, 90% 
confidence of less than 10% PPEN at 3,220 fps. We 
are concerned that we don’t meet this requirement, 
so we can use this as our null hypothesis: 

H0: PPEN(3,220 fps) > 10%  (2) 

And our alternative hypothesis is that we actually 
do meet spec, so: 
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H1: PPEN(3,220 fps) ≤ 10%  (3) 

The question now is what test statistic do we use 
to decide between these hypotheses? Collins 
presents the generalized likelihood ratio, GLR, 
which is defined as the ratio of the likelihood of a 
given condition divided by the maximum 
likelihood over all possible conditions. In this 
case, the values of V50 and σ in the probit model of 
the distribution determine the conditions. That is, 
there are some regions of the (V50, σ) plane over 
which the probability of penetration is more than 
10%, corresponding to the null hypothesis where 
we fail to meet the ballistic specification. The 
probability that the actual values of V50 and σ fall 
in this region depends on the maximum value of 
the likelihood ratio LMAX in this region, compared 
to the maximum likelihood value, MLE, over the 
entire (V50, σ) plane, GLR = LMAX/MLE. 

Figure 3 below shows a plan view of the contour 
plot shown earlier, indicating the regions where 
we meet or fail to meet the spec, as well as the 
MLE value. 

 
Figure 3: Contour plot of likelihood function over the (V50,σ) 
plane, showing the regions where we meet or fail to meet spec. 

The dividing line in Figure 3 cleanly separates the 
two hypothesis regions of the plane. The equation 
for the line is found from inverting equation (1) 
above, so that we have: 

                 𝑉𝑉50 = 𝑉𝑉𝑇𝑇𝑃𝑃𝑃𝑃𝑆𝑆 −Φ−1(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) · 𝜎𝜎 (4) 

Where Φ–1(x) is the inverse of the cumulative 
normal distribution function. Below this line, H0 
is valid. Figure 4 below shows the two likelihood 
values, LMAX and MLE, used to calculate the 
generalized likely ratio in a contour plot similar to 
that shown in Figure 1 with the region of the null 
hypothesis cut away. 

 
Figure 4: Evaluation of LMAX using the likelihood function and the 

ballistic performance specification. 

According to Collins [6-7], the appropriate 
hypothesis test statistic is the deviance ∆, which is 
defined as: 

         ∆ = −2 · ln(GLR) = −2 ∙ ln �LMAX
MLE

� (5) 

This test statistic should be distributed according 
to a two-tailed χ² distribution. The likelihood 
model has two degrees of freedom because of its 
two parameters, V50 and σ. The cumulative χ² 
with two degrees of freedom happens to be a 
particularly simple function: 
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            χ𝑆𝑆𝐶𝐶𝐶𝐶
2 (∆) = 1 − 𝑒𝑒−

∆
2 = 1 − 𝛼𝛼 (6) 

 
(Note that this is the area to the left of ∆, while 
most χ² charts show the area to the right, denoted 
by the symbol α). Also, we are only concerned 
with a one-tail distribution rather than a two-tail – 
we are only worried if the performance is too low, 
not too high – so the α-value is actually one-half 
that of the regular χ² [7]. So, the probability that 
we can reject the null hypothesis – the confidence 
that the probability of penetration actually meets 
spec – is simply: 

        𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒 = 1 − 𝐺𝐺𝐺𝐺𝐺𝐺
2

= 1 − 𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀
2·𝑀𝑀𝐺𝐺𝑃𝑃

  (7) 

This is fairly easy to calculate. For a given set of 
ballistic data, all that is required is to calculate the 
MLE value and then find the maximum likelihood 
along the line corresponding to the spec, equation 
(4). The confidence of meeting spec is then given 
directly by equation (7). 
 
4. EXAMPLE CALCULATIONS 

Consider the data shown in Table 1 above. The 
MLE mean and standard deviation are 3,273 and 
19.3. Suppose the spec calls for a 10% probability 
of penetration at 3,220 – how confident are we that 
the data supports this assertion? 

If we use the MLE values for mean and standard 
deviation, we find that the velocity at 10% PPEN is 
3,248, which is better than 3,220. But that’s not the 
question – we need to know the confidence. If we 
look at equation (4), we need to find the largest 
likelihood value consistent with the condition that: 

             𝑉𝑉50 = 3,220 −Φ−1(10%) · 𝜎𝜎 (8) 
 

The value of Φ–1(10%) is –1.28155. The ratio of 
the maximum likelihood along this line on the 
(V50, σ) plane to the MLE value is 0.26, occurring 
at (3266, 35.95) so the confidence that we meet 
spec is 1 – 0.13, or 87%. Note that this calculation 
provides the confidence at a single point, the one 

called out in the requirement. But the method can 
generate confidence at any combination of velocity 
and PPEN. Figure 5 shows the confidence as a 
function of PPEN for a range of striking velocities. 
The 87% confidence at 10% PPEN with a velocity of 
3,220 is just one of the points on these curves. 

 
Figure 5: Confidence versus PPEN for multiple striking velocities. 

Similarly, we can create a chart showing the 
confidence as a function of striking velocity for 
various levels of performance. This is shown in 
Figure 6 below. 

 
Figure 6: Confidence versus specified striking velocity for 

multiple values of PPEN. 

Again, for comparison, the legacy “22 for 22” test 
regime provides only a pass/fail criterion for a 
single point on the charts shown above. 

 
5. MODEL VERIFICATION 

The statistical analysis described here provides 
much more information than a simple pass/fail 
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evaluation of a target. However, at this point it is 
entirely a mathematical exercise. In order to have 
confidence in the analysis, we need to see it applied 
to a wide range of data and its conclusions 
evaluated against the known performance of a 
given armor design. However, there are no 
“known” armor performance guidelines against 
which we can benchmark the model. There is no 
standard armor target and round combination for 
which the penetration versus velocity curve has 
been mapped with the necessary degree of 
precision. There is, however, a way to conduct this 
verification – through simulated ballistic testing 
against a “perfect” penetration-velocity curve 
modeled as a cumulative Gaussian distribution with 
a specified µ and σ. The goal here is to conduct 
simulated V50 tests, analyze the data using the 
statistical methods described here, and check to see 
whether they predict confidence levels in 
accordance with the known underlying distribution. 

For this purpose, we created a simulated 
threat/target combination with a probability of 
penetration described by µ=3,000 and σ=30. We 
then conducted approximately 1,000 simulated V50 
tests using a Modified Langlie method together 
with a random number generator to determine the 
result of each simulated “shot”. We performed 
22-shot simulated V50 tests, in which the first shot 
of each test was selected at random from a uniform 
distribution centered on the actual V50 value. We 
then culled the test records that had no zone of 
mixed results, since a ZMR is very helpful in 
calculating the MLE value. This left 995 valid test 
records simulating V50 tests conducted against a 
“perfect” target.  

The question we want to address is the extent to 
which the analysis predicts confidence levels that 
are in accord with the data from the underlying 
distribution. For this purpose, consider the chart 
displayed in Figure 7. This shows the confidence 
versus striking velocity curve for PPEN=10% for one 
of the 995 test records, derived from a simulated V50 
test with 22 shots. Each point on the curve shows 
how confident we are that the actual V10 velocity is 

higher than the value on the abscissa. On this same 
chart, we show the underlying cumulative Gaussian 
distribution from which the data was generated, 
together with an indicator showing the actual V10 
velocity, which is 2,962. 

 
Figure 7: Confidence versus velocity for PPEN=10% for one 

simulated test record, and underlying distribution. 

The figure shows that for this test record, our 
confidence in the V10 limit is merited when the 
confidence level is over about 64%. For confidence 
levels below this, our confidence is not merited. For 
example, we are about 55% confident that the V10 
is greater than 2,970, but in fact the V10 is less than 
that. On the other hand, we are 90% confident that 
V10 ≥ 2,935 which is correct.  If our statistical 
analysis is valid, then when we check to see 
whether we are correct about the V10 value at any 
given confidence level, we should be right about as 
often as our confidence. That is, if we do the 
analysis of 995 test records, then the actual V10 
value should be higher than the V10 value at the 90% 
confidence level about 90% of the time. 

This is a simple analysis to undertake, and can be 
conducted using desktop software (Microsoft Excel 
2013™). The results are given in Figure 8, which 
shows the frequency with which the actual V10 
velocity (within 1 fps tolerance) was greater than 
the lower limit of the V10 velocity estimated  from 
the simulated data records at a given confidence 
level. The results indicate very close agreement, 
with a root mean square error of about 0.5% 
between the confidence levels and the frequency 

Confidence is Merited

Confidence is Not Merited

V10
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with which the calculated V10 levels are correct. 
The chart extends down to 70% confidence, 
spanning the range over which ballistic 
specifications are often written. 

 
Figure 8: Results from 22-shot simulations showing the confidence 

of the V10 estimate versus the frequency with which it is correct. 

Although the agreement between the confidence 
model and the simulated Monte Carlo ballistic data 
appears very good, there is a problem – the model 
used here is not the same as that described in the 
literature. In Collins’ work [6-7], the number of 
degrees of freedom of the cumulative chi-square 
distribution used in hypothesis testing is one, rather 
than two as used in the analysis shown above. As a 
consequence, the equation recommended in 
Collins’ work for the confidence is actually: 

                𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒 = 1 −  �1 − χ2(∆,1)�
2

  (8) 

The difference between a chi-square with one 
degree of freedom as opposed to two is significant. 
It is a simple matter to re-compute the analysis 
using one degree of freedom, and the results are 
shown in Figure 9 below which compares the 
results with one degree of freedom versus two. As 
can be seen, the one degree of freedom model does 
not match the expected confidence of the 
underlying distribution. Worse, the analysis is not 

conservative. That is, the frequency with which our 
analysis matches the predictions of the underlying 
distribution is significantly less than the expected 
confidence. 

 
Figure 9. Comparison of simulation results using one degree of 

freedom versus two in the chi-square hypothesis test. 

The mismatch between predicted and actual 
confidence using the standard one degree of 
freedom analysis has been noted by others. In 
particular, Roediger [9] says the following: 

Critical decisions are often based upon 
confidence bound estimates. Better 
guidance on their use for decision makers 
would be welcomed. Some experts hold the 
view that confidence bounds in the 
sensitivity testing setting can't be taken too 
seriously. On the other hand, using 
confidence bounds as in choosing a D-
Optimal phase II test sequence is a useful 
application of them. 

6. LIMIT VELOCITY ESTIMATES 
The Modified Langlie approach used in producing 

simulated ballistic records is designed to focus on 
the V50 velocity, rather than a required probability 
of penetration such as a V10. As a consequence, it 
sometimes results in ballistic records with a narrow 
zone of mixed results. In examining the 995 test 
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records, it was found that many of them had a very 
narrow ZMR, with only about 4 fps between the 
slowest complete and the fastest partial. This tends 
to result in a higher estimated V10 bound at a given 
confidence level, owing to an abnormally low value 
of σ. Alternate test procedures, such as RMJ, 
Neyer, or 3POD, purposely test further away from 
the V50 velocity in order to focus on higher 
performance goals such as a V10. This may increase 
the separation between fast partials and slow 
completes, reducing the likelihood of test records 
with a narrow ZMR, but may also skew the 
distribution of chosen test velocities. 

While Figure 8 shows the potential accuracy of 
the two degree of freedom method, it remains to be 
seen how closely the calculated limit velocity 
corresponds to the actual limit. For this purpose, we 
looked at the difference between the calculated and 
actual V10 velocity for each test record, and created 
a histogram showing the frequency of these values 
for all 995 tests. The results are shown in Figure 9, 
which indicates that, for example, about 48% of the 
simulations provided a 90% confidence V10 value 
within 50 fps below the actual limit. The blue bars 
in the figure are those for which the velocity was 
below the actual V10 (the confidence was merited), 
while the red bars indicate those for which the 
velocity was higher than the actual V10 (the 
confidence was not merited). 

 
Figure 10: Distribution of error in V10 limit velocity for 90% 

confidence level. 

The same analysis can be conducted at lower 
confidence levels, which results in pushing the limit 
velocity closer to the actual V10 value. Figure 10 
shows a similar histogram for the case of 70% 
confidence. 

 
Figure 11: Distribution of error in V10 limit velocity for 70% 

confidence level. 

7. CONCLUSION 
The ballistic test and analysis procedures 

described here rely on traditional statistical 
methods for hypothesis testing using 
straightforward calculations that can be handled on 
any desktop computer. The Monte Carlo 
simulations show the accuracy of the two degree of 
freedom confidence level calculations using 
simulated ballistic test data, providing results that 
agree closely with the underlying distribution. The 
information provided by this method includes a 
map of the confidence of meeting required ballistic 
performance as a function of projectile velocity and 
probability of penetration over the entire range of 
interest. In contrast, the legacy “22 of 22” test 
provides only a pass/fail evaluation at a single 
point. 

In addition, the test procedure described here is 
much less sensitive to a number of factors that can 
improperly invalidate an armor design. For 
example, shots fired from a test weapon naturally 
vary in velocity, so some tolerance about the 
desired spec velocity is allowed during validation. 
Owing to test rules (fast partials are valid shots, 
slow partials are not), most testing occurs well 
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above the spec velocity, sometimes at the upper 
limit of the tolerance band. This effectively changes 
the ballistic specification, and can result in 
invalidating a design that actually meets 
specification. Because a single penetration results 
in failure, armor concepts are frequently over-
designed, resulting in heavier packages that place 
more strain on other vehicle systems. 

In contrast, the validation method described here 
tests over the entire velocity range, with multiple 
partial and complete penetrations. A single 
complete does not automatically disqualify an 
armor design. In addition, there is no velocity 
tolerance to maintain – there are no “too fast” or 
“too slow” invalid shots – they all count. This fact 
also helps dilute the influence of outlier shots. For 
example, a single out-of-spec test projectile may 
penetrate a target at a lower velocity. In the legacy 
test regime, this disqualifies the armor design. In 
the alternative validation testing described here, it 
results in just another complete to be analyzed with 
the rest of the data. 

As noted above, the choice of the test algorithm 
can affect the likelihood of having a reasonable 
zone of mixed results. The Robbins-Monro-Joseph 
(RMJ), three-phase optimal design (3POD), and 
Neyer test procedures are all designed to focus on a 
particular ballistic requirement, for example a V10, 
as opposed to a V50. It would be interesting to see 
an analysis of a similar Monte Carlo test performed 
with these different procedures, compared to the 
Modified Langlie method used here. In addition, it 
would be interesting to see how the confidence 
versus V10 velocity curves are affected by the 
choice of procedure and by the number of shots in 
each test record. One would expect that the more 
shots, the tighter the tolerance. That is, the 
difference between the actual V10 velocity and the 
90% confidence V10 velocity should get smaller as 
the number of shots increases. This could also be 
investigated through Monte Carlo simulations. 

The approach described here was validated 
through simulations using an underlying Gaussian 
(probit) model of ballistic performance. Other 

distributions are also commonly used in analyzing 
ballistic data, such as the logistic (logit) or 
complementary log-log models. A National 
Institute of Standards and Technology study [8] 
examined the differences between these 
distributions when evaluating ballistic data taken 
from body armor testing and found no significant 
preference for one over the other – all three seemed 
to work well. It would be interesting to see whether 
a difference in the underlying distribution would 
make any significant difference in the results of 
Monte Carlo simulations of confidence estimates. 

Most importantly, it would be good to further 
examine the difference between hypothesis testing 
conducted with a single degree of freedom chi-
square hypothesis analysis, versus a two degree of 
freedom analysis. In theory, the one degree of 
freedom analysis should be the proper approach, as 
it corresponds to the difference between the number 
of degrees of freedom in the denominator and 
numerator of the generalized likelihood ratio. 
However, simulations show that using this analysis 
is less accurate than a two degree of freedom 
model, and not conservative. Further investigation 
of this issue could be undertaken with additional 
simulations. 
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